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Quadratic Tests for Detection of Abrupt
Changes in Multivariate Signals

Igor V. Nikiforov

Abstract—This correspondence considers the problem of detecting
abrupt changes in the mean of a multivariate Gaussian random signal.
A fixed sample size�2-test is compared against the optimum sequential
tests (�2-CUSUM and �

2-GLR).

I. INTRODUCTION

The change detection problem considered in this correspondence
arises from practical tasks when it is necessary to detect quickly any
significant change at an unknown time� in the mean vector� of an
independent Gaussian multivariate(r > 1) sequence

L(Yt) =
N (�0;�); if t < �

N (�1;�); if t � �
(1)

taken from some process. Two main ways of extending the scalar
detection scheme are known in the literature [2]:linear andquadratic.
The linear multivariate scheme, when it is necessary to specify
both a nominal value�0 (hypothesisH0) and an alternative�1
(hypothesisH1), is an elementary extension of the scalar one [2].
In this correspondence, we will discuss thequadratic multivariate
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scheme when it is sufficient to specify a nominal value�0 and an
ellipsoid around�0 in the following manner:

H0 : f�0g vsH1 : f�1 2 �1 : (� � �0)
T��1(�� �0) = b

2g (2)

where�0; �, and the signal-to-noise ratio (SNR)b are known. We
assume the non-Bayesian (min-max) approach; hence, the change
time � is an unknown butnonrandominteger value. Let � (� � 1)
be the distribution of the observationsY1; . . . ; Y��1; Y� ; . . . ; Yt when
Y� is the first observation distributed according to the lawN (�1;�);
�1 2 �1. The associated probability and the expectation are denoted
byP� andE� , respectively. The notation1 corresponds to the case
when all observations are distributed according toN (�0;�). Hence,
P1(�) = P� (�), andE1(�) = E� (�). The statistical performance
of non-Bayesian algorithms is measured with the aid of a criterion
proposed by Lorden [7]. The stopping (alarm) time of a change
detection algorithm is denoted byN . We require that the ‘worst
case’ mean detection delay

��� = sup
��1

esssupE�(N � � + 1 j N � �; Y1; . . . ; Y��1) (3)

should be as small as possible for a given mean time before a false
alarm

�T = E1(N): (4)

Lorden has proved that the cumulative sum (CUSUM) scheme
minimizes��� (3) in the classK = fN : E1(N) � g and that the
infimum of ��� asN ranges over this class is

n() = inf
N2K

�
� �

log 

�(�1; �0)
as !1 (5)

where �(�1; �0) = E� (log
' (Y )

' (Y ) ) is the Kullback–Leibler

information, and '�;�(Y ) = (2�)� (det�)� expf�1
2 (Y �

�)T��1(Y � �)g is the probability density of the multivariate
Gaussian distributionN (�;�). Moustakides [8] and Ritov [11]
investigatednonasymptoticaspects of optimality for the CUSUM
scheme. Finally, recent optimality results are summarized in the
exhaustive survey of Lai [6].

The goal of the correspondence is to compare optimal sequential
and nonsequential, or fixed sample size (FSS), detection strategies for
the model (1), (2) by using the criterion (3), (4). The starting point
of this direction is the classical work of Wald [13]. It is known that
the sequential strategy is optimal for detection of abrupt changes,
but a practical motivation to use the nonsequential one is the fact
that this strategy uses observations ‘block-by-block’ that seriously
simplify the transmission and processing of the input information. The
complexity of a detector is proportional to the mean number of the
likelihood ratio (LR) computations at timet. In the case considered,
the sequential detector leads to the number of the LR computations,
which grows to infinity witht. Unlike the sequential detector, the FSS
rule involves only one LR computation at every staget. The results
of the comparison between optimal sequential and FSS strategies for
scalar signals can be found in [12] for the Bayesian approach and
in [10] for the min-max approach. It is shown in [10] that the scalar
CUSUM is asymptotically twice as good asthe nonsequential (FSS)
optimal competitor. We will show that this fact can be extended to the
model (1), (2). This means that in some practical detection problems,
it is reasonable to use avery simple�2-FSS test rather than the
optimal�2 sequential tests with ahigh computational cost.

1053–587X/99$10.00 1999 IEEE
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II. SEQUENTIAL STRATEGY

To solve the problem of sequential detection for unknown�1, Wald
[13] proposed two possible solutions. The first one is to replace the
LR by the weightedLR ~�t

k = � � �

�
t

i=k

' (Y )

' (Y )
f(�1)dS,

wheredS is the surface element of the ellipsoid�1, and theweighting
function f(�1) is concentrated on the surface of�1. The second

solution consists of maximizing the LR t

i=k

' (Y )

' (Y )
with respect

to �1 2 �1 : �̂t
k = sup� 2�

t

i=k

' (Y )

' (Y )
, which results in the

generalized likelihood ratio (GLR) test. Therefore, the�2-CUSUM
is based on theweightedLR ~�t

k, and the�2 GLR is based on the
GLR �̂t

k. The detailed proofs of the�2-CUSUM and GLR tests are
given in [2, ch. 4, 7]. The stopping time of the�2-CUSUM test is
expressed in the following form:

~N = inf t � 1 : max
1�k�t

~Stk � h

~Stk = � (t� k + 1)b2

2
+ logG

r

2
;
b2 �tk

2

4

�
t
k

2
= �Stk

T
��1 �Stk

(6)

where �Stk = t

i=k(Yi � �0); G(d; z) = 1 + z
d
+ � � � +

z

d(d+1)���(d+n�1)n! + � � � is the generalized hypergeometric function,
andh > 0 is a threshold. Let us consider the model given by (1) and
(2). The�2-CUSUM test is asymptotically optimal in the sense of
the min-max criterion (3), (4). The result is stated by the following
theorem (see the proofs in [2] and [9]).

Theorem 1: The ‘worst case’ mean detection delay for the�2-
CUSUM test (6) is given by the following asymptotic equation
���( �T ) � n( �T ) � log �T

�(� ;� )
= 2 log �T

b
as �T ! 1, where�(�1; �0) =

b

2
.
The stopping time of the GLR test is

N̂ = inf t � 1 : max
1�k�t

Ŝ
t
k � h

Ŝ
t
k = � (t� k + 1)b2

2
+ b �

t
k

(7)

where�tk is defined in (6), andh > 0 is a threshold. Let us show
now that the�2-GLR test is asymptotically (as�T ! 1) equivalent
to the above�2-CUSUM test. It follows from the properties of the
generalized hypergeometric functionG(d; z) [1, Ch. 13] that the
function F : y 7! logG(d; y

4
) is convex and its derivative exists

and is non-negative wheny � 0 and d � 1. It then can be shown
that the inequalities

�(x)y + �(x) � logG d;
y2

4
� y (8)

where �(x) = d

dy
(logG(d; y

4
))jy=x and �(x) = ��(x)x +

logG(d; x
4
), hold for anyx; y � 0. The first inequality has a simple

geometric interpretation. The linear functionL : y 7! �(x)y+�(x) is
tangent to the graph ofF (y) = logG(d; y

4
) at the point(x; F (x)).

In this inequality,x plays the role of a tuning parameter. Taking
into account the equationG(d; z) = e

p
zM(d � 1

2
; 2d � 1; 4

p
z),

whereM(a; c; z) is a confluent hypergeometric function [1], we get
the following asymptotic equations for�; �: �(x) = 1 � O( 1

2x
)

and�(x) � � r�1
2

log 2x asx ! 1. From [7], it follows that the
‘worst case’ mean detection delay��� for the stopping timeN̂ is less
than or equal toE�finf(t � � : Ŝt� � h)g. From (8), it follows
that E�finf(t � � : Ŝt� � h)g � E�finf(t � � : ~St� � h)g.
According to [2] and [9],E�finf(t � � : ~St� � h)g � 2h

b
as

h ! 1. Combining these results, we get the asymptotic relation

��� � 2h
b
(1 + o(1)) as h ! 1 for the �2-GLR test. Let us

define the modified SNR̂b(x) = b

�(x)
and the following stopping

time T̂b̂ = infft � 1 : Ŝt1(b̂) � hg (T̂b̂ = 1 if no such t

exists), whereŜt1(b̂) = � tb̂

2
+ b̂j�t1j. Taking into account the left-

hand side of (8), we getP� (T̂b̂ < 1) � P� ( ~T < 1), where
~T = infft � 1 : ~St1 � �2h + �g. From [2], it results that
E1(N̂b̂) � P� (T̂b̂ <1)�1, whereN̂b̂ is the stopping time of the
�2-GLR test when the SNR equalŝb. Hence,E1(N̂b̂) � e� h+� .
Let us choose the parameterx � h as h ! 1. Since�(h) ! 1
and �(h) � � r�1

2 log 2h as h ! 1, we get logE1(N̂b̂) �
(h � r�1

2
log 2h)(1 + o(1)) as h ! 1. Taking into account that

b̂(h) = b

�(h)
! b ash ! 1, we get���( �T ) � 2 log �T

b
(1 + o(1)) as

�T ! 1. This yields the following conclusion.
Corollary 1: The asymptotic relation���( �T ) � 2 log �T

b
as �T !1

is also valid for the�2-GLR test.

III. FSS AGAINST SEQUENTIAL

The FSS strategy is based on the following rule: Samples of fixed
size m � 1 are taken, and at the end of each sample, a decision
function is computed to test between the hypothesesH0 andH1 (2).
Sampling is stopped after the first samplej of observations for which
the decisiondj is taken in favor ofH1. The solution to the optimal
hypotheses testing problem is given by the�2-test [2, ch. 4 and 5].
Therefore, the stopping time�N of the repeated�2-test is

�N = inf
j�1

fmj : dj = 1g; dj =
1; if �

jm

(j�1)m+1 � mh

0; if �
jm

(j�1)m+1 < mh

(9)

whereh > 0 is a threshold, and(�tk)
2 is given by (6). The�2-

FSS test has two tuning parameters:m andh. Hence, the statistical
properties of this test depend onm andh. Let us compute the ‘worst
case’ mean detection delay��� (3) for the�2-FSS test as a function
of these parameters.

Lemma 1: The ‘worst case’ mean detection delay for the�2-FSS
test (9) is given by the following function ofm andh:

���(m;h) = max
m

1� �
; max
1<l�m

m� l+ 1

+
m

1� �
P �

2
r;0 <

m2h2

m� l+ 1
(10)

where� = P �2r;mb < mh2 , and�2r;� is distributed according to
a noncentral�2 law, with r degrees of freedom and noncentrality
parameter�.

Proof of Lemma 1:See Appendix A. It follows from [2] that the
mean time before a false alarm for the�2-FSS test is

E1( �N) = m 1�P �
2
r;0 < mh

2 �1
: (11)

To compare the�2-FSS test against the optimum sequential can-
didates, we have to find the best possible values of the tuning
parametersm andh for the�2-FSS test. As it follows from (10) and
(11), the optimal choice of the tuning parametersm andh reduces to
the constrained minimization problem in (12), shown at the bottom of
the next page. Therefore, the optimal values of the tuning parameters
m� and h� are functions of�T . In the rest of this correspondence,
we will consider the minimum ‘worst case’ mean detection delay
���( �T ) = ���(m�( �T ); h�( �T )) as a function of�T for the�2-FSS test.

An asymptotic upper boundfor the minimum “worst case” mean
detection delay��� is established in the following Theorem.
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Fig. 1. “Exact” solution ���e (solid line), the asymptotic upper bound
��� = 4 log �T

b
(dashed line), and the bias���e �

4 log �T
b

(dashed-dot line)
as functions oflog �T .

Theorem 2: The minimum “worst case” mean detection delay for
the�2-FSS test (9) is given by the following asymptotic inequality:

���( �T ) � 4 log �T

b2
(1 + o(1)) as �T !1: (13)

Proof of Theorem 2:See Appendix B.
Corollary 2: Let us consider model (1), (2) and compare the

optimal quadratic sequential and FSS detection procedures. Asymp-
totically, as �T goes to infinity, the properties of these procedures are
given by the following relations:

���( �T )�
2 log �T

b2
; for the�2-CUSUM (GLR) test

�4 log �T

b2
; for the�2-FSS test

as �T!1:

Remark 1: First, the asymptotic optimal choice of the tuning
parametersm;h is

m� � 2 log �T

b2

h� � bf1 + 2 [log( 2 log �T=2)� log 2
p
2�]= log �Tg�1=2

as �T !1: (14)

Second, let us compare theasymptoticupper bound��� = 4 log �T
b

and (14) with the “exact” (nonasymptotic!) optimal solution for the
�2-FSS whenr = 10 and b = 1. The “exact” (with the subscript
“e”) and asymptotic values of���; m� andh� as functions oflog �T
are presented in Figs. 1–3. For the “exact” solution, we deduce
the optimal tuning parametersm�

e and h�e by numeric constrained
minimization of the objective function���(m;h) (12) for a given�T . It
is worth noting that a very slow convergence of the “exact” functions
���e ; m

�
e ; andh�e to the asymptotic ones as�T !1. The explanation

Fig. 2. “Exact” solution m�e (solid line) and the asymptotic formula
m� = 2 log �T

b
(dashed line) as functions oflog �T .

Fig. 3. “Exact” solution h�e (solid line) and the asymptotic formula
h� = h�(log �T ) [see (14)] (dashed line) as a function oflog �T .

of this fact lies in the feature of the function~f(h; �T ) (see the proof
of Theorem 2). The rapidity of the convergence is defined by the
term1= 2 log �T . It follows from Theorem 2 that���e ( �T )� 4 log �T

b
�

o(4 log
�T

b
). Fig. 1 shows that the bias���e ( �T )� 4 log �T

b
(dash-dot line)

is increasing when�T ! 1, but it is o(4 log
�T

b
) as �T ! 1. Fig. 4

shows that the ratio���e =(
4 log �T
b

) tends to one as�T ! 1.1 This
completely confirms the results of Theorem 2.

APPENDIX A
PROOF OF LEMMA 1

We assume without any loss of generality that� = I in model
(1), (2). Because the observationsY1; Y2; . . . ; Yt are independant,

1To explain this fact, let us recall the definition of the� and(1 + o(1))-
notations. We consider two functions:f; g : + ! ; ff(x) � g(x) as
x !1g , ff(x) = g(x)(1 + o(1)) asx !1g , ff(x) = �(x)g(x),
where�(x)! 1 asx!1g.

minimize
m;h

���(m;h) = max
m

1� �
; max
1<l�m

m� l+ 1 +
m

1� �
P �

2

r;0 <
m2h2

m� l+ 1

subject to: �T �m 1�P �2r;0 < mh2
�1

= 0; m � 1 and h > 0:

(12)
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Fig. 4. Ratio���e =(
4 log �T
b

) (solid line) as a function oflog �T . The horizontal

dashed straight line shows the limit value���e =(
4 log �T
b

)! 1 aslog �T !1.

the ‘worst case’ mean detection delay for the�2-FSS (3) can be
rewritten as

��� = sup
��1

esssupE�
�N � � + 1 j �N � �; Y

��1
1

= max
1�l�m

esssupEl
�N � l+ 1 Y

l�1
1 (15)

whereY k
1 = (Y1; . . . ; Yk), andY 0

1 = ;. If l = 1, then

esssupE1
�N Y

0
1 = m(1� �)�1 (16)

where� is the probability of miss detection. If1 < l � m, then

esssupEl
�N � l+ 1 Y

l�1
1

= m� l+ 1 +m(1� �)�1 esssupPl d1 = 0 Y
l�1
1 : (17)

Let us consider the conditional probabilityPl(d1 = 0 j Y l�1
1 ). It is

easy to see that the vector�Sm
1 = l�1

i=1(Yi � �0) +
m

i=l(Yi � �0)

givenX = l�1
i=1(Yi��0) follows a multivariate normal distribution

with (conditional) expectationE �S(X) = (m� l+ 1)(�1� �0) +X

and variance-covariance matrix� �S = (m � l + 1)I. Hence, we
get Pl(d1 = 0 j Y l�1

1 ) = Pl(k �Sm
1 k2 < mh j X) = P(�2r;� <

m h

m�l+1 j X), where� = (m� l+1)�1k(m� l+1)(�1��0)+Xk22.
The distribution function of a noncentral�2 law is given by [5, ch. 28]

P �
2
r;� < y = e

�
1

i=0

�i

2ii!
P �

2
r+2i;0 < y (18)

where 0! = 1, andP(�2r;0 < y) = 1

2 �( )

y

0
x �1e� dx. It

results from (18) thatP(�2r;� < y) < P(�2r;0 < y) for anyy; � > 0.
Therefore, we get

esssupPl d1 = 0 Y
l�1
1

= Pl[d1 = 0 j X = �(m+ l� 1)(�1 � �0)]

= P �
2
r;0 < m

2
h
2(m� l+ 1)�1 :

Combining this with (15)–(17) yields (10). The proof of Lemma 1
is complete.

APPENDIX B
PROOF OF THEOREM 2

We apply (10), (11) (whereE1( �N) = �T ), and (12) to compute
m� and h�. Equation (10) implies

m P �
2
r;mb � mh

2 �1

� ���(m;h) � m� 1 +m P �
2
r;mb � mh

2 �1
: (19)

We consider the asymptotic case�T ! 1. The idea of the proof
consists of showing the fact thatm�( �T ) ! 1, andh�( �T ) � b as
�T !1. Let us denotex = mh2. First, we will show that the optimal
value isx�( �T )!1 as �T !1. From (11) and (19), it results that

��� � �TP �
2
r;0 � mh

2
P �

2
r;mb � mh

2 �1

� �TP �
2
r;0 � mh

2 = �TP �
2
r;0 � x : (20)

It follows from (5) that the asymptotically best result is��� =
O(log �T ) as �T ! 1; hence, only the casex�( �T ) ! 1 can
lead to this solution. Because of this fact, we will use the fol-
lowing tail probability of a central�2 law [3] P(�2r;0 � x) �
�( r2 )

�1(x2 )
�1e� asx ! 1 to compute the mean time before a

false alarm in the remainder of this proof. It follows from (11) that
log �T = logm � logP(�2r;0 � mh2); hence

log �T = logm+ log �
r

2
+
x

2
� r

2
� 1 log

x

2
+ o(1)

asx = mh2 !1: (21)

Second, let us show thatm�( �T ) ! 1 as �T ! 1. Let us suppose
thatm� = const. Becausex�( �T ) ! 1 as �T ! 1, we use the tail
probability of a noncentral�2 law with � = mb2 [3] P(�2r;� � x) �
e� �( r

2
)G( r

2
; �x

4
)P(�2r;0 � x) asx!1. It follows from (21) that

h( �T ) � 2 log �T
m

as �T ! 1. Combining this with the asymptotic

expansion [1, ch. 13]G( r2 ; y) � �(r�1)
�( )

e2
p
y(4
p
y)� asy !1

yields ��� � O( �T (log �T ) e�
p

log �T ) as �T ! 1. Therefore, the
conditionsx�( �T )!1 andm�( �T )!1 as �T !1 arenecessary
to obtain an optimal solution.

Now, let us show thath�( �T ) � A, whereA is a positive constant,
as �T ! 1, and then find the optimal valueh�( �T ). It results from
(19) and (21) withx = mh2 ! 1 andm ! 1 as �T ! 1 that
��� � 2(log �T�log �( )�o(1))

[h +o(1)]P(� �mh )
as �T ! 1. Thus, it is quite obvious

that if h�( �T )! 0 as �T !1, then the denominator in the right side
of the last equation tends to 0 when�T !1. Now, leth�( �T )!1
as �T !1. By using Chebyshev’s inequality forP(�2

r;mb � mh2),
we again have the denominator that tends to 0, and therefore, the
optimal parameterh�( �T ) must be�A as �T !1. It then follows that
m�( �T ) � 2 log �T

h
as �T ! 1. Let �(z) = 1p

2�

1
z

expf� t
2
g dt.

Applying a normal approximation to the�2
r;� distribution (see details

in [5, ch. 28]) with � = mb2, we getP(�2
r;mb � mh2) =

�(mh �mb �rp
4mb +2r

) + O( 1p
mb

) as� = mb2 ! 1, uniformly in x =

mh2. Combining the last result with (19) andm� � 2 log �T
h

, we obtain

���(h; �T ) � 2f(h; �T ) log �T
b

(1 + o(1)) as �T ! 1 with f(h; �T ) =

f b
h

+ b
h

[�(

p
2 log �T

2
(h
b
� b

h
))+O( h

b
p

2 log �T
)]�1g: Becauseh�( �T ) �

A; f(h�; �T ) � ~f(h�; �T ) = f b
h

+ b
h

[�(

p
2 log �T

2 (hb � b
h ))]�1g

as �T ! 1. Let us denoteg( �T ) = minh>0
~f(h; �T ) and h� =

argminh>0
~f(h; �T ). It can be shown thatlim �T!1 g( �T ) = 2

and h� � bf1 + 2 [log( 2 log �T=2)� log 2
p
2�]= log �Tg�1=2

as �T ! 1. This implies (13), and the theorem is proved. Let
us add the following remark about a relation between���( �T ) and
the asymptotic lower boundn( �T ) � 2 log �T

b
. Applying the same

approach to the left side inequality of (19), we get an obvious result
2 log �T
b

(1 + o(1)) � ���( �T ) � 4 log �T
b

(1 + o(1)) as �T ! 1.
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The CFAR Adaptive Subspace
Detector is a Scale-Invariant GLRT

Shawn Kraut and Louis L. Scharf

Abstract—The constant false alarm rate (CFAR) matched subspace
detector (CFAR MSD) is the uniformly most-powerful-invariant test and
the generalized likelihood ratio test (GLRT) for detecting a target signal
in noise whose covariance structure is known but whose level is unknown.
Recently, the CFAR adaptive subspace detector (CFAR ASD), or adaptive
coherence estimator (ACE), was proposed for detecting a target signal in
noise whose covariance structure and level are both unknown and whose
covariance structure is estimated with a sample covariance matrix based
on training data. We show here that the CFAR ASD is GLRT when the
test measurement is not constrained to have the same noise level as the
training data. As a consequence, this GLRT is invariant to a more general
scaling condition on the test and training data than the well-known GLRT
of Kelly.

Index Terms—Adaptive arrays, matched filters, maximum likelihood
detection, multidimensional signal detection, radar detection.

I. INTRODUCTION

Recently, we have suggested the constant false alarm rate (CFAR)
adaptive subspace detector (CFAR ASD) [3] for detecting a target
signal in a complex multivariate measurementy whose distribution
is complex normaly � CN [�ej� ; �2RRR]: The signal scaling�
determines the null hypothesisH0: � = 0 and alternate hypothesis
H1: �> 0: We factor out a noise scaling�2 from the noise covariance
structureRRR: a step to be clarified in the subsequent discussion.

When the noise covariance structure and scalingRRR and �2 are
both known, the appropriate noncoherent detection statistic is the
matched filter magnitude-squared or the matched subspace detector
(MSD). This uses the inner product of the whitened measurement
z = RRR�(1=2)y with the whitened signal template� = RRR�(1=2) 

�
2 =

j yRRR�1yj2

 yRRR�1 �2
=
zyPPP�z

�2
� (1)

wherePPP� = �(�y�)�1�y is the projection onto�: This statistic is
complex chi-squared (or gamma) distributed; the MSD compares it
with the threshold� to decide on hypothesisH0 or H1:

When the covariance matrixRRR is known but the scaling�2 is
unknown, the MSD may be normalized by the magnitude squared
of the measurement weighted byRRR�1: This measures the direction-
cosine squared of the angle thatz makes with�:

cos2 =
j yRRR�1yj2

( yRRR�1 ) (yyRRR�1y)
�: (2)

This statistic has a “beta” density underH0; underH1, it is most
clearly described as a monotone function of a statistic with a scaled
noncentral “F” distribution

cos2 =
F

F + 1
; F =

zyPPP�z

zyPPP?� z
(3)
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